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ABSTRACT 

A model to compute the collapse velocities of various elements of 

a metallic liner of a shaped charge from the known detonation properties 

of the explosive used and the geometrical configurations of the charge 

is proposed. The calculated collapse and jet velocities increase from 

the apex of the liner toward the base, reach a maximum, and then decrease 

monotonically thereafter. The calculated velocity distribution in the 

jet after it goes through compression agrees qualitatively and quanti- 

tatively with available experimental measurements. 
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INTRODUCTION 

The existing theory of explosives with metallic lined cavities 

was first published in the open literature in 1948 by Birkhoff, Mac- 

Dougall, Pugh and Taylor [1]*. The paper gave a qualitative descript- 

ion of the phenomenon of collapse of a metallic liner of a shaped 

charge and the formation of a jet. The quantitative part of the 

theory provided a first order approximation to the various character- 

istics of the phenomenon. The whole theory was based on simulating 

the relative motion of the metallic liner during collapse with the 

steady flow of two jets of water impinging upon each other as 

developed by Milne-Thomson in [2] , The relative motion considered 

here is with respect to an observer at the stagnation point. The 

theory assumed that each element of the liner collapses with a 

constant velocity V , and thus the ensuing jet was a uniform one of 

a constant length I,  equal to the length of the side of the uncol- 

lapsed liner, and had ü uniform distribution of velocity along it. 

Pugh, Eichelberger and Rostoker [3] modified the earlier theory by 

assuming the velocity of collapse V to be a function of position on 

the liner which decreases monotonically from apex to base. This 

modification had the effect of elongating the ensuing jet and produc- 

ing a velocity gradient along its length. An enormous amount of lit- 

erature has appeared since then which is mostly of an experimental 

nature and expounds the various aspects of the theory of shaped 

charges. In 1955 R. J. Eichelberger re-examined the non-steady theory 

of jet formation [4] and in his conclusion raised some doubts about 

the hydrodynamical model. Moreover, the theory, as developed in [1] 

and modified in [3] , fails to correlate the velocity of collapse of 

a liner element to the properties of the explosive used, or to the 

♦References are listed on page 24 
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geometrical configuration of the charge in question. The application 

of the theory as developed in [1] and [3], necessitated the experiment- 

al measurement of collapse velocities of various elements of a liner 

for each charge with a specified explosive and a given geometry. 

The present paper takes into account the varying properties of 

various explosives and the different geometrical configurations of 

various charges and predicts quantitatively the collapse velocities 

of the various elements of a liner and the subsequent formation of a 

jet. The main ideas in the current investigation are the following: 

1. The liner is replaced by a system of discrete solid liner 

elements. We assume that we may neglect forces of interaction between 

liner elements and strength properties of liner material. This is 

justified since the pressure at the detonation front is several orders 

of magitude greater than the ultimate tensile strength of a typical 

liner material e.g. the peak pressure at the detonation front for 
3 n 

pentolite at 1.65 gm/cm density is approximately 2389.55 Kg/mm" 

(see [5]) while the ultimate tensile strength for quenched copper alum- 
2 

inum is 85.40 Kg./mm . 

2. The impulse transmitted by the detonation products to a liner 

element is obtained by integrating the excess pressure p(x,y,t) along 

the path of the liner element. Thus if 

x-xk(t) y- 
k 

:y (t) (1 .1) 

are the parametric equations of the path of a typical liner el erne». t. 

then 

« 
p{xk(t). yk(t).t) dt . (k=1.2,. .,n) (1 • 2) 

10 
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represents the total impulse per unit area of liner given to the k 

element by the time it reaches its stagnation point, where p(x,y,t) 

is the excess pressure over the atmosphere at the point (x,/) and 
k th 

time t, t the instant the detonation front reaches the k  element, 
k     0 

t is the stagnation time of the same element and k is a Lagrangian 

coordinate indicating the initial position of the element. Flow 

properties behind the detonation front in T.N.T. were studied by Sir 

G. I. Taylor [6J and similar studies for pentolite were performed by 

R. Shear [5] . In this paper we shall restrict our considerations to 

wedge shaped liners Figure 1. 

II.  PRESSURE APPROXIMATION 

In this section we obtain an approximation to the pressure wave 

behind the detonation front in a shaped charge warhead. The starting 

point is the Taylor wave [6] . The pressure wave in the detonation 

products behind the front is approximated in the space [p,x/Ut) by a 

triangular pressure pulse. The variables p, U, t, and x denote the 

overpressure, the detonation velocity, the time measured from initiat- 

ion, and the abscissa of the point under consideration. Let the 

origin of our stationary coordinate system be at the center of the 

plane of initiation of the charge as shown in Figure 1. We consider 

the function 

P(Z) « Pf - P0 ♦ (Pf - P0) (Z-l)/(l-A), l< Z <1 C2-1) 

where, Z»x/Ut, p. the detonation pressure, p the ambient atmospheric 

pressure, to be an approximation to the overpressure distribution in 

a completely confined charge which has its initiation .i! open. 

Equivalently p (Z) is considered as an approximation to the one 

dimensional plane Taylor wave in a tube -..^th an open end. The 

parameter X, in Equation (2.1) is the value of Z for which the part- 

11 



icle velocity u vanishes in the Taylor wave. The overpressure p(Z) 

as given by Equation (2.1) is modified whenever the charge is unconfin- 

ed, and secondly it has to be modified further due to the presence of 

the cavity in the explosive which causes a reduction in the total 

available energy greater than otherwise assumed. For an unconfined 

charge the parameter X in Equation (2.1), which determines the slope of 

the linear fit to the Taylor wave is replaced by A1 where, 

Xi * X + (1-XH Es.^A (1 .ln/i~)  H (t.t0ÖA).H(l-y*-)}/At. (2.2) 

In Equation (2.2), 6A is an element of area of an unconfined surface 

S. of the charge,«.—(t) the distance traveled by the sound wave propagat- 

ing from 6A inward normal to the plane z = o at time t, £ is the total 
n 

distance along that normal from 6A to the plane z = o, t.. is the time 

of arrival of the detonation front at the element öA, A is the total 

surface area of the charge up to the detonation front, uc is the average 

value of (u + c) over the wave as it sweeps over 6A, u is the particle 

velocity, c is the sound speed in the wave, and H (x) is the Heaviside 

step function. The summation in (2.2) is carried out over all unconfined 

surfaces S of the charge. Effectively Equation (2.2) accounts for the 

lack of confinement on the charge surface by increasing the slope of th 

linear fit to the pressure wave in the plane ip,x/Ut), thus causing 

faster pressure decay. The contribution from an unconfined surface 

element 6A is seen from equation (2.2) to be (1-X) 6A (1-il /£—)/K> n        '       o'   v  n uc' t 
and its effect is felt only after the disturbance from 6A I.JS reached 

the plane z»o by virtue of H (l-l /I—). Let Ei, i = 1,2,3,4, be a 

confinement function associated with surface S. of the charge where, 

E. ■ o if S. is confined. 

E. * 1 if S. is unconfined. 
i      i 

12 
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Wricing equation (2.2) in integral form one obtains 

Xli+ f1"^ { (E1 + E3) l\ *  (E2 + E4) I2]/  4 (K+Ä) Ut'        (2,3) 

where 
/lit __ 

2K [1-1/ iuc  (t-x/U)}] H (t-x/U). H(l-£/{uc(t-x/U)}) dx, 
/Ut    /•! 

4dx/ o  y o {l-z/uc (t-x/U)}H(t-x/U).H{l-2/uc (t-x/U)}d z.  (2.4) 

Evaluating the integrals I. and I7 and substituting in (2.3) one 

obtains 
Ar o+ (1 " o^ N/4 (K + £) L,t (2.5) 

where. 

N={2(E1 + E3) KU [ (t-fc/uc) ♦ (Ä/uc)£n (Ä/uc.t)] +2(E +E4) 

Ui  [ 2t - 3£ / 2 üc + (£/uc). In  (£/üc.t)]} H (t-l/üc), 

where, 

nc= av tu+c) = av IHISIL-u^av-ä-. U = av Z.U=U (l+Xo)/2.    (2.6) 

Equation (2.1) would thus be replaced by \ 

P (2) s Pf - P0 
+ (Pf - P0) (2 - 1) / (1 - Xj) (2.7) 

The overpressure distribution as given by (2.7) reeds one further 

13 
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modification due to the presence of the cavity in the explosive and 

hence the loss of available energy. This modification is effected 

as before by increasing the slope of our linear fit. Equation (2.7) 

is modified to 

P(Z) » Pf - P0 * (pf - P0J (Z - 1) / [ l-{ Xj +(l-X1)Vc/Vt}].(2.8) 

where V is the volume of the cavity up to the detonation front, V 

is the total volume of the explosive which would have been present 

from the apex of the liner up to the detonation front had the cavity 

been absent. V and V are given by 

Vc = 11  (Ut-d)2 tan a . H (t - t1 ) 

Vt = 4)1 K [ (Ut-d) H (tn - t) ♦ (U t" - d) H U-t")]. 

Equation (2.8) then reduces to 

p(x,y,t) « pf - po * (pf - P0) (x/ut - \-)l{\-{\l *  (i-xp (Ut-d)2. 

tan a . H (t-tJ)/2K [(Ut-d) H(t" - t) + (U t" - d)H(t-t")]}] .  (2.9) 

Equation (2.9) reveals our assumption of plane detonation wave in the 

fact that p is independent of y and z and is a function of x and t 

only. Figure 2 shows a schematic of a cross section of the charge, 

and Figure 3 shows the triangular wave profile for charges at different 

times measured from initiation. 

III. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION 

For each strip of the liner we integrate numerically the following 

set of equations which are obtained from Newton's laws of motion 

14 



a Xk = p Cxk(t), yk(t), t). sin a    (3.1) 

o y* = -P (xk(t). yk(t), t). cos a    (3.2) 

i k = 1,2,..., n, where p(x,y,t) is given by (2.9), a is the mass per 

unit area of the liner and the dot indicates differentiation with 

respect to t. This implicitely involves the assumption that each 

element of the liner collapses in a direction perpendicular to the 

surface of its initial position on the liner. This assumption is 

consistent with assuming the flow in the detonation products to be 

inviscid and was made earlier by G. Birkhoff [7]. The integration of 

(3.1), (3.2) is carried out subject to the conditions: 

at t = tk; xk = xk - d + h (2k-l)/2n, xk= 0 o'      0        \ ji      > 

yk = yk = h tan a(2k-lj/2n, yk=0 (3.3) 

and tk = x^/U  k=0.1.2.....n (3.4) 

The numerical integration of (3.1), (3.2) is terminated at t. which 

is such that 

P(xk,yk.tj) = 0 

or at t which satisfies (see Fig. 3) 
s 

yk(tk) = o. 

(3.5) 

(3.6) 

k   k th          k      k 
In the case of t, < t , the motion of the k  element for t. < t < t Is Is 
is given by 

X  = Xj + (t-tj) Xj 

y = yj ♦ (t-tp yl 

(3.7) 

(3.8) 

15 
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k  k  k  k 
where x,, y,, x., f.  are the coordinates and the velocity components 

th k k 
of the k  element at t = t.. The stagnation time t is obtained in 

this case by setting in (3.8) 

/ = 0 

i.e. 
,k   k-.k 
h - V^l (3.9) 

and the stagnation point in this case 

k        k      .k    k-.k 
Xs ^ Xl  " Vyl/yl (3.10) 

The velocity of collapse at the stagnation point is given in this 

case by 

= {(xj)  MyJ) } 
2.1/2 

(3.11) 

In the other case of t < t. , i.e., when the particle reaches the 

axis before the overpressure vanishes. 

i-{ u*)' K2{1/2 
+ V? i (3.12) 

Combining Equations  (3.1),  (3.2)  one obtains 

k k x    + tan a  -y    = 0, (3.13) 

Integrating (3.13) subject to (3.3) one arrives at 

x + tan a.y =0 

yk = (d-xk)-cot a + 2h(2k-l)/2n sin 2a 

This is the equation of the trajectory of the k  particle. 

h 
y = 0 in Equation (3.14) one obtains 

(3.14) 

Setting 

16 
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xk = d + h sec2o(2k-l)/2n (3.15) 

Equation (3.15) may be used to check the numerical integration. 

When the k  particle reaches the stagnation point, the distrib- 
-+k 

ution of velocities is as shown in Figure 4, where V is the actual 
th P 

velocity of the k  particle relative to our fixed coordinate system 
-•■k 

as it enters the stagnation point. V is the velocity of the stagnat- 
th 

ion point, relative to the fixed axes as the k  particle enters it, 

and 
-Vt     -*]( -*]r 
v = V - V 
r   p   s 

(3.16) 

th 
is the velocity of the k  particle relative to the stagnation point. 

-►k -*k  k 
Since V has been determined above it remains to determine V , ß and 

P s' 

v .  iv I is determined numerically, thus 
r  ' s' J 

Vk(tk) ^ (x^-x1"1)/^1-^'1) ss     s   s    J   ^ s        s 

Using Equation (3.15) this reduces to 

Vk(tk) ^ 2h sec2a/n(t
k+1-tk'1)  (k=l .2 .... ,n).  (3.17) 

t ,t ,...tn are obtained above in the numerical integration, 

t0 = (d-h sec2a/2n)/U 

by definition and t,  is obtained by quadratic extrapolation i.e.. 

t   ■-  a(n+l)*' +b(n+l) + c. (3.18) 

17 



where , 

a= [te - 2t        + te     ] /2 s s s 

(3-2n)t^/2 + 2(n-l)t^"1-   C3n-l)t^2/2 

and c = (n-l)(n-2)t"/2 - nCn^t""1 +nCn-l)t""2/2, 

From Figure 4 

[v^l/cos a =  |^|/sin ßk =  |v^|/sin(iT/2 + a - 0k)     (3,19) 

and hence 

i.e. 

cot 6    =  |vk|.  sec a/rvk|   - tan a 

cot ßk =  |^|/|yk|   - tan a (3.20) 

k th 
and hence 3 may be evaluated. At tne stagnation point the k  part- 

k k     k 
icle 6m is divided into two parts 6m. and 6m and we have by the laws 

of conservation of mass and momentum 

6m = 6m. + 6m 
J g 

. k |-»k|   „k r k k  r k k 
-6m .v cos ß = 6m..v. + 6m .v 1 r1 J J    g g 

(3.21) 

(3.22) 

wnere v. and v are the velocities of 6m. and 6m relative to an 
J     g J     g 

observer at tne stagnation point. An observer stationed at the 

stagnation point will observe the flow of the liner material to be 

nonsteady, however for the sake of simplicity we shall assume that 

k    rk. 
v = - v 
g    ' r1 

= - v. 
J 

(3.23) 

Equation (3.23) amounts to assuming the flow of liner material relative 

to the stagnation point to be steady and that the law of conservation 

18 
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of energy holds there. It is to be observed that equation (3.23) was 

first used by G. Birkhoff, D, P. MacDougall, E. M. Pugh and Sir G.  I. 

Taylor in [1] and later by E. M. Pugh, R. J. Eichelberger and N. 

Rostoker [3]. Using (3.23) in (3.22) and then solving (3.21), (3.22) 

one obtains the familiar results 

6nu /«Smk = sin2(ßk/2) (3.24) 

Smk/Smk =  cos2(3k/2) (3.25) 

If v. and v are the respective velocities of <5m. and 6m relative to 
J     g 3 g 

fixed coordinate axes as they leave the stagnation point then 

^Ht^H^M7k
rl (3,26) 

l«^H«|. (3.27) 

Substituting for V and [v [ their values from (3.19) one obtains 

|Vk|= [V*! cos(ol-ß
k/2)/sin(ßk/2)      (3.28) 

1^1= [V*! sin(a-ßk/2)/cos(3k/2)       (3.29) 

Equations (3.28) and (3.29) agree with equations (5) and (6) of Pugh, 

Eichelberger and Rostoker [3] when one substitutes in the latter 

equations 6=0. 

An examination of the computed jet velocity distribution when 

plotted as a function of its initial position (Lagrangian coordinate) 

on the liner reveals that this distribution cannot be stable. This 

instability is due to the presence of an inverse(positive) velocity 

gradient Figure 9. From a physical point of view this means that 

19 
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as the various jet elements form and emerge from their stagnation 

points; the jet undergoes a continuous process of compression. During 

compression, momentum and energy are continuously transferred from the 

rear portion of the jet to the front portion until a physically stable 

velocity distribution is attained in the jet. A physically stable 

velocity distribution is one which has no inverse velocity gradient 

and in fact is what would be observed experimentally. This phenomenon 

of jet compression has been well known to experimenters for sometime. 

To simulate mathematically the process of jet compression, in its 

generality, is a rather complex task. The compression phase can be 

simulated in a simplified form, by treating it as the elastic collision 

of a string of heavy particles with the instantaneous mass and velocity 

distributions. Mathematically this is accomplished by an iterative 

procedure. Suppose the I      liner element has already collapsed and 

reached its stagnation point and the jet underwent compression. Let 

the jet velocities at that stage be denoted by u , k-l,...,l.    As the 

(.£+13  liner element collapses and reaches its stagnation point then 

we set u = u , k=l,...,£, and u   = VT . For i=o,l,2,... one com- 

k    k+1 k   k+1 
pares u. and u.  , (k=l,2,...,£).  If u. < u.  then this means that 

particles k and (k+1) go through a collision process and acquire new 

velocities 

k   rf k k  - k+1 k+1   . k+1, k   k+l,,/ri. k  . k+1,  ,, _., 
u. ,= Tom. u. + 6m.  u.  - e6m.  (u. - u.  )]/[6m. + 6m.  1  (3.30) 
i+l  lji    ]   1      j   1   1      J    J 

, k+1, rt k k x k+1 k+1 t k+1 , k k+K,, rt k . k+1, ,_ ,., 
(u. ,) = [6m. u. + 6m. u. + e6m. (u. - u. )]/ [6m. +5ni. 1,(3.31) v i+r  l]i    j   1     ■} 1   1    ' *     l    j        3 

otherwise the velocities of particles k, (k+1) remain unchanged. Next 

we turn our considerations to particles (k+1) and (k+2) where the vel- 

ocity of (k+1) is given by Equation (3.31). The i  iteration is 

terminated when k assumes the values 1,2,...,1.    The whole iteration 
k+1   k 

process is terminated when the condition u.  < u, is satisfied for 

all k=l,2,...,£.  Equations (3.30) and (3.31) are obtained by 

20 
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solving the equations of conservation of momentum together with the 

equation defining the coefficient of restitution,e [8]. The parenthe- 
k+1 

sis surrounding u. . in Equation (3.31) indicates that this velocity 

is not the final one for this iteration. The above iterative process 

is analogous to the Gauss-Seidel method. 

IV. APPLICATION 

The preceeding theory was applied to charges with geometry as 

shown in Figures 5 and 6 loaded with composition B with loading density 
3 

1.7 gms/cm . These charges are 4 inches thick. Figure 7 shows the 

collapse velocity curves of liner elements as functions of their initial 

positions. Figure 8 shows collapse angle curves and Figure 9 shows 

the jet velocity curves for the various liner elements as they emerge 

from their stagnation points. The dotted curves are the final jet 

velocity distributions after these jets go through a compression pro- 

cess. Two compression cases have been considered e=l (perfectly elastic), 

and e=0 (perfectly inelastic), and are shown in Figure 9. Table 1 

shows how the various computed properties of charge 5 vary as functions 

of the number of zones across the liner and hence is indicative of the 

speed of convergence. The velocity of the tip of the jet for charge 

6 was found to be 0.591 cms/w sec, (e=l) and 0.543 cms/ iisec(e=0), 

while the ratio of the liner's mass in the slug was found to be 0.79. 

The calculation reveals that the tip of the jet reaches its terminal 

velocity rather early in the collapse process, for example for charge 

6 the tip of the jet (e=l) reaches its terminal velocity after 0.09 of 

the liner had collapsed. R. Dipersio observed that the calculated 

slug velocity distributions for some cases reveals the existence of an 

inverse velocity gradient in the slug and indicates a compression 

process similar to that occuring in the jet. This phenomenon of slug 

compression is known experimentally. 
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TABLE 1 

No. of Liner 
Zones 

Percentage of 
Liner Mass in 

Slug 

Velocity of Tip 
of Jet cm/ysec 

(e=l) 

Velocity of tip 
of Jet cm/ysec 

(e=0) 

10 0.856 0.714 0.706 

20 0.863 0.732 0.691 

30 0.865 0.737 0.688 

40 0.866 0.741 0.686 

50 0.866 0.743 0.685 

100 0.867 0.746 0.684 

200 0.867 0.747 0.684 

I 
The geometry and dimensions of charges 5 and 6 were taken from 

a report by Dipersio, Whiteford, and Simon[9]. The experimental scatter 

in the results given in [9] is rather large and prevents a precise 

comparison, although the calculation results are in agreement with 

accepted experimental values for such charges. 

This model has a virtue of simplicity, does not need any experiment- 

al measurements for its utilization and can therefore be used for para- 

metric study. Two computer codes exist with one difference between 

them. The first code performs the compression of the jet in real 

physical time while the second delays the compression until the whole 

collapse phenomenon is terminated. The second code is about twice as 

fast as the first code. The second code runs in about 3 to 4 minutes 

on BRLESC II for a case using 100 liner zones. 

A possible future improvement for this model would result if one 

computes the pressure wave using a convenient hydro-code and then 

couple this calculation with the present code to predict the collapse 

and jet formation characteristics. The inclusion of strength properties 

\ 
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of the liner material might also be important in the collapse process 

near the base of the liner 
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Figure 1.  Schematic    Drawing   of a Typical   Charge 
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Figur« 2.  Schtmatic   RtpresenfaHon  of fhe   Collapsing   Liner. 

rb 



32 r- 

8     .9     1.0   11 
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Figure 4.   Distribution  of  Velocities   at the Stagnation   Point. 
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